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ABSTRACT

Electric grids are the conduit for renewable energy delivery and will play a crucial
role in mitigating climate change. To do so successfully in resource-constrained
low- and middle-income countries (LMICs), increasing operational efficiency is
key. Such efficiency demands evolving knowledge of the grid’s state, of which
topology—how points on the network are physically connected—is fundamental.
In LMICs, knowledge of distribution topology is limited and established methods
for topology estimation rely on expensive sensing infrastructure, such as smart
meters or PMUs, that are inaccessible at scale. This paper lays the foundation for
topology estimation from more accessible data: outlet-level voltage magnitude
measurements. It presents a graph-based algorithm and explanatory visualization
using the Fielder vector for estimating and communicating topological proximity
from this data. We demonstrate the method on a real dataset collected in Ac-
cra, Ghana, thus opening the possibility of globally accessible, cutting-edge grid
monitoring through non-traditional sensing strategies coupled with ML.

1 INTRODUCTION

Climate change mitigation is a twin challenge: decarbonizing energy production and globally meet-
ing energy needs. Electric grids play a central role in addressing this challenge, and must adapt
to deliver electricity between new generation technologies and increasing consumer demand. Es-
pecially in low- and middle-income countries (LMICs)—where per capita energy consumption is
expected to grow dramatically despite far less investment in grid infrastructure—this growth will
require new levels of efficiency and responsiveness in grid operations. This new operating approach
should maximize the longevity of existing infrastructure and precisely target costly upgrades.
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Figure 1: The proposed algorithm reconstructs grid topology using voltage measurements from sen-
sors placed on the edge of the network, and produces a Fiedler vector-based heatmap visualization.



Efficient operation of an electrical grid requires evolving knowledge of the grid’s state, of which
topology—how points on the network are physically connected, including on which of three
phases—is a key piece. Knowledge of grid topology can enable loss reduction by identifying con-
nections for phase re-balancing, locating lossy equipment, and targeting load re-distribution to pro-
long equipment life. Topological awareness can help localize the root causes of outages for quicker
restoration and reduced use of polluting backup generation. Unfortunately knowledge of distribution
grid topology is often poor or erroneous, especially in urban areas of LMICs.

Existing solutions for topology estimation demand advanced sensing, such as smart meters or PMUs
(Yuan et al| (2022); [Cavraro & Kekatos| (2018)); [Yu et al.| (2017)); such devices are expensive to
purchase, install, and operate and therefore largely absent from LMIC distribution networks. This
work demonstrates topology estimation in LMICs by lowering the necessary sensing requirements.
By proposing a modification of the transformation in Bariya et al.|(2021) and a new visualization,
we uncover rich topological information about the proximity of grid nodes from lower-cost, less-
precise voltage magnitude sensors at the network edge (Klugman et al.| (2021))). To our knowledge,
this work presents the first real-world demonstration of topology estimation in the distribution grids
of a LMICs from such an accessible data source.

We present an initial evaluation of the proposed method in three selected case studies. The latter case
studies expand upon our base method by adding creative sensor deployment strategies and fusing
auxiliary data types from the same sensor, including event-triggered point-on-wave snapshots. These
case studies lay a promising foundation for topology estimation from low-cost sensor deployments
that are designed for the constraints of LMIC grids.

2 DEPLOYMENT AND DATA

Our topology estimation method is validated on a dataset from 1,276 PowerWatch sensors deployed
in Accra, Ghana. The PowerWatch sensors cost <1 % of commercially available PMU sensors
that are traditionally used in topology estimation, and have been deployed at scale to monitor grid
reliability in LMIC contexts (Klugman et al.|(2021)). PowerWatch sensors plug into customer wall
outlets and report voltage magnitude, frequency, and power state every two minutes. Due to limited
GPS availability indoors, data is only provided with second-level timestamps, which precludes the
use of topology algorithms that require precise time-synchronization across sensors. The sensors are
deployed in groups of generally 3 but up to 20 sensors called “sites” to monitor a single transformer.
As several hundred customers can be served by a transformer, this is an enormous but necessary
undersampling, reflecting a reality for topology estimation in LMICs: comprehensive sensing of the
distribution network is essentially impossible.

We present four case studies in Accra: two at densely deployed sites—named 59 and 78—with 15
and 20 sensors respectively, a third at many sites spread along Aburi Road, and a fourth at two
sites around Darkuman Road. In the latter case studies, voltage magnitude data is compared with
two other data types—outage data and point-on-wave (POW)—to demonstrate the value of data
fusion for topology recovery. Outage data is obtained by consolidating individual sensor reports
into estimated outages via clustering [Klugman et al.|(2021). We transform this into outage overlap:
a proximity metric measuring the number of common outages experienced by a pair of sensors,
normalized by the total number of outages. The POW data consists of two-second windows of
high-frequency 4 kHz data of the raw voltage waveform immediately preceding an outage event.

3 TOPOLOGICAL PROXIMITY ESTIMATION ALGORITHM

When measurements are available from only a small subset of grid nodes, complete topology esti-
mation is impossible (Moffat et al.|(2019)). Instead, we recover the relative connectivity/proximity
of measured nodes, similar to [Bariya et al.| (2018)). Although connectivity alone does not defini-
tively identify topology, it can indicate grid structure and, when presented to a grid operator who
has prior knowledge of possible configurations, can suggest the precise topology. Targeted, dense
deployments of sensors can provide more precise structural insights, as we show in the site 59 case
study.

To obtain a topological metric, we start with the variance of normalized voltage differences. Nor-
malization is important because sensors are sparsely deployed, separated by significant line drop,
and possibly under different transformers. This variance is converted to a pair-wise proximity met-



ric varprox, bounded between 0 and 1: varproz;; = 1 — var(v; — v;)/4 where ¥; is a normalized
voltage magnitude time series segment from sensor ¢. Voltages are driven by currents across the
network; the more nearby the current, the larger the impact on voltage. Therefore, voltages at prox-
imal nodes will track more closely and have a larger varproz (Bariya et al., [2021)). For n sensors,
varprozr can be arranged into a symmetric n X n matrix with ones on the diagonal. To communi-
cate these values, we propose a heatmap visualization ordered by the Fiedler graph projection. This
projection is obtained by representing varprox matrix as a graph with a node per sensor, connected
by edges weighted by pairwise varprox values (Horaud (2009)). Thus, two sensors closer together
in the physical network are connected by a heavier edge. The Fiedler vector, derived from the graph
Laplacian and containing one value per node, succinctly describes a graph’s structure, with highly
connected nodes given closer vector values. To visualize network proximity and geographic location
simultaneously, sensor map locations are colored by Fiedler value.

4 CASE STUDIES

As validation in the absence of ground truth topology, we present four case studies of topology
estimation with the proposed method. Taken together, these initial results demonstrate large-scale
structure learning, transformer-level connectivity discovery, detection of grid configuration changes,
and phase identification, all from low-cost voltage magnitude measurements. All figures associated
with the case studies are presented in Appendix [A]

Aburi Road:  Fig. [2] visualizes varprox for sensors spread along Aburi Road. The Fiedler vector
is used to order the heatmap and color sensors on the map. varprox aligns with the spatial ordering
along the road, reflecting the likely grid configuration of a line running along the road. There is a
distinct proximity group in the south, possibly served by another branch of the grid. This structural
information compellingly demonstrates the topological information present in the voltage data.

Darkuman Avenue: In Fig. |3] we compare proximity heatmaps of outage overlap and varproz
over several nearby sites served by different transformers. Both metrics show similar proximal
sensor groups corresponding to spatial groups, though disagreement increases over smaller groups.
The results suggest that outage overlap can be used to bolster voltage-based topology estimates over
large regions, with the caveat that it requires a much longer timescale to obtain sufficient outages

than to compute robust varprozx.
Site 78: Fig. [ visualizes the evolution of varprox at site 78 over three months. The metric

is strikingly consistent, revealing a largely stable grid configuration. This amount of topological

consistency matches what we would expect over such a time frame.
Site 59: Consistency at this site is similar to site 78. The distinctive proximity change for sensor

10122 is visible even in raw voltage data (Fig. [5). POW snapshots captured just around an outage
allows us to identify apparent phase groups: the outage moment allows us to precisely time align
the individual waveforms, revealing ~ 120° shifts between phases. Comparing these groups with
varprox groups shows promising correspondence.

5 CONCLUSION

We present the first demonstration of topology estimation from accessible, outlet-level voltage mag-
nitude data collected in a LMIC. We propose a statistical metric and associated graph projection-
based visualization to uncover and communicate topological information. Our case studies on a real
world dataset from Accra indicate that operationally valuable information encompassing structure
and phase is present in the measurements. This coupling of accessible sensing strategies, thought-
ful visualization, and ML algorithms holds the promise of bringing state-of-the-art but traditionally
expensive grid monitoring capabilities to LMIC contexts to inform grid-operation.
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A CASE STUDY FIGURES
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Figure 2: Proximity along a line: Fielder-
ordered heatmap (top) and sensors col-
ored by Fielder value (bottom) along Aburi
Road. A distinct proximity group is visible
in the south.

Figure 3: Proximity under several transformers:
Comparing varprox (left) and outage overlap (right)
at Darkuman Ave. Outage overlap can augment
voltage-based topology estimates.
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Figure 4: Topological stability:
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The consistency of varproz is clear over three months at site 78.
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Figure 5: A topological change and proximity within phases: Between December and June at site
59, heatmaps of varproz (left) reveal a connectivity change for sensor 10122 which starts proximal
to 3711BB6B and shifts to be near AE1E42BD; this is evident in raw voltage data (right). A POW
snapshot—precisely time-aligned by the outage event—reveals phase groups that show promising
correspondence to varprox groups.
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